iso file download
文库搜索
切换导航
文件分类
频道
仅15元无限下载
联系我们
问题反馈
文件分类
仅15元无限下载
联系我们
问题反馈
批量下载
(19)国家知识产权局 (12)发明 专利申请 (10)申请公布号 (43)申请公布日 (21)申请 号 202211259179.3 (22)申请日 2022.10.14 (71)申请人 国网四川电力送变电建 设有限公司 地址 610000 四川省成 都市成华区建 设南 支路2号 (72)发明人 阳建 李刚 景文川 徐源 王涛 黄欠 黄鹏 余游 王泽贵 (74)专利代理 机构 成都行之专利代理事务所 (普通合伙) 51220 专利代理师 史丽红 (51)Int.Cl. G06V 10/764(2022.01) G06V 10/774(2022.01) G06V 10/82(2022.01) G06V 10/40(2022.01)G06N 3/04(2006.01) G06N 3/08(2006.01) (54)发明名称 一种基于深度学习的地理信息提取方法及 系统 (57)摘要 本发明公开了一种基于深度学习的地理信 息提取方法及系统, 属于图像处理技术领域; 用 三维图像数据结合已有的地图数据, 通过深度学 习方法训练得到网络分类模型, 在训练网络分类 模型前先对三维图像数据进行一系列的预处理 操作得到梯度向量, 将三维图像数据中小结构的 常规地图上无法准确描述显示的地理信息暴露 出来, 在通过深度学习方法来训练构建网络分类 模型, 卷积神经网络可以很方便提取三维图像数 据中判别性较高的信息, 通过网络分类模型对待 提取图像识别提取时能够得到更加准确的地理 信息分类结果, 为张牵场的选址提供准确的地理 依据; 由于网络分类模型具有良好的训练基础, 使得三维的待提取图像也能够快速精准的提取 出所需地理信息 。 权利要求书2页 说明书6页 附图2页 CN 115546551 A 2022.12.30 CN 115546551 A 1.一种基于深度学习的地理信息提取 方法, 其特 征在于, 包括: 步骤一: 获取目标区域的三维图像数据; 步骤二: 对三维图像数据预处 理后切片处 理得到N个图像数据; 步骤三: 计算出各图像数据的梯度 幅值图像, 并对梯度 幅值图像进行分割得到区域图 像; 步骤四: 计算每个区域图像的梯度向量后输入卷积神经网络进行训练得到网络分类模 型; 步骤五: 将待提取图像输入网络分类模型进行识别提取 得到该图像的地理信息 。 2.根据权利要求1所述的一种基于深度 学习的地理信 息提取方法, 其特征在于, 所述预 处理过程为将三维图像数据投影得到二维图像数据。 3.根据权利要求1所述的一种基于深度 学习的地理信 息提取方法, 其特征在于, 梯度幅 值图像的获取 方法为: 基于图像数据的像素点计算出x方向的梯度Dx和y方向的梯度Dy; 基于x方向的梯度Dx和y方向的梯度Dy根据式 计算该像素点的图像梯度 计算出所有像素点的图像梯度 后得到梯度幅值图像。 4.根据权利要求3所述的一种基于深度 学习的地理信 息提取方法, 其特征在于, 像素点 在x方向的梯度Dx和y方向的梯度Dy通过下式计算: 式中x和y为像素点在图像数据上的横坐标和纵坐标。 5.根据权利要求1所述的一种基于深度 学习的地理信 息提取方法, 其特征在于, 所述 区 域图像的获取方法包括: 用分水岭算法对梯度幅值图像进 行分割得到多个区域不同的图像 块, 对每个图像块进行 所述区域类别的标注得到区域图像。 6.根据权利要求1所述的一种基于深度 学习的地理信 息提取方法, 其特征在于, 区域图 像的梯度方向计算方法为: 区域图像上的像素点 i的坐标为(n, m); 用像素点 i的梯度方向 向量为 以区域图像上 所有像素点的梯度方向 向量表示该区域图像的梯度向量。 7.根据权利要求1所述的一种基于深度 学习的地理信 息提取方法, 其特征在于, 所述待 提取图像为无 人机测量的三维地理数据。权 利 要 求 书 1/2 页 2 CN 115546551 A 28.根据权利要求7所述的一种基于深度 学习的地理信 息提取方法, 其特征在于, 先对待 提取图像执 行步骤二和步骤三后得到待提取图像的区域图像; 再计算待提取图像各区域图像的梯度向量后输入网络分类模型进行识别提取。 9.一种基于深度学习的地理信息提取系统, 应用于权利要求1 ‑8任意一项所述的基于 深度学习的地理信息提取方法, 包括: 采集模块、 预 处理模块、 计算模块、 训练模块和提取模 块; 采集模块用于获取目标区域的三维地图数据; 预处理模块用于对三维地图数据预处 理后切片处 理得到N个图像数据; 计算模块用于计算出各图像数据的梯度幅值图像, 并对梯度幅值图像进行分割得到区 域图像; 训练模块用于对区域图像计算梯度方向后输入卷积神经网络进行训练得到网络分类 模型; 提取模块用于将待提取图像输入网络分类模型进行识别提取 出该图像的地理信息 。 10.一种非暂态计算机可读存储介质, 其上存储有计算机指令, 其特征在于, 该指令被 处理器执行时实现权利要求1 ‑8中任一项所述的方法的步骤。权 利 要 求 书 2/2 页 3 CN 115546551 A 3
专利 一种基于深度学习的地理信息提取方法及系统
文档预览
中文文档
11 页
50 下载
1000 浏览
0 评论
0 收藏
3.0分
赞助3元下载(无需注册)
温馨提示:本文档共11页,可预览 3 页,如浏览全部内容或当前文档出现乱码,可开通会员下载原始文档
下载文档到电脑,方便使用
赞助3元下载
本文档由 SC 于
2024-02-18 22:24:38
上传分享
举报
下载
原文档
(599.0 KB)
分享
友情链接
GB-T 14592-2014 钼圆片.pdf
GB-T 19228.2-2011 不锈钢卡压式管件组件 第2部分:连接用薄壁不锈钢管.pdf
腾讯安全 物联网汽车安全.pdf
CSA 零信任网络安全:软件定义边界 SDP 技术架构指南.pdf
GM-T 0099-2020 开放式版式文档密码应用技术规范.pdf
2022 中国信创产业竞争力研究报告v2.pdf
GB-T 33172-2016 资产管理 综述、原则和术语.pdf
GB-T 29243-2012 信息安全技术 数字证书代理认证路径构造和代理验证规范.pdf
GB-T 4226-2009 不锈钢冷加工钢棒.pdf
T-NIFA 22—2023 金融数据安全应急响应和处置指引.pdf
DB37-T 4646.2—2023 公共数据 数据治理规范 第2部分:数据清洗比对 山东省.pdf
GB-T 20278-2022 信息安全技术 网络脆弱性扫描产品安全技术要求和测试评价方法.pdf
T-JSJTQX 42—2023 公路连续梁桥整联同步顶升 施工技术规程.pdf
GB-T 22264.5-2008 安装式数字显示电测量仪表 第5部分:相位表和功率因数表的特殊要求.pdf
T-GDC 19—2019 埋地用双高筋增强聚乙烯 HDPE 缠绕管.pdf
T-CAPE 11002—2019 铁路工程施工质量安全信息化监控系统规范.pdf
GB-T 21028-2007 信息安全技术 服务器安全技术要求.pdf
GB-T 35295-2017信息技术大数据术语.pdf
GB-T 36092-2018 信息技术 备份存储 备份技术应用要求.pdf
GB-T 43506-2023 电信和互联网服务 用户个人信息保护技术要求.pdf
1
/
11
评价文档
赞助3元 点击下载(599.0 KB)
回到顶部
×
微信扫码支付
3
元 自动下载
官方客服微信:siduwenku
支付 完成后 如未跳转 点击这里 下载
站内资源均来自网友分享或网络收集整理,若无意中侵犯到您的权利,敬请联系我们
微信(点击查看客服)
,我们将及时删除相关资源。